. THE REPORT OF A DESCRIPTION OF A DESCRIP

Seat No.

HAM-003-1163004

M. Sc. (Sem. III) (CBCS) Examination June – 2023 Mathematics : CMT-3004 (Discrete Mathematics)

> Faculty Code : 003 Subject Code : 1163004

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions :

- (1) There are five questions.
- (2) Answer all the questions.
- (3) Each question carries 14 marks.

1 Answer any seven of the following : $7 \times 2=14$

- (1) Define semigroup. Prove or disprove : \mathbb{Z} with usual subtraction is semigroup.
- (2) Define with example : Symmetric closure of R.
- (3) Define with example : POSET.
- (4) Draw hasse diagram of $(P(A), \subseteq)$ where $A = \{1, 2, 3\}$.
- (5) Write down absorption properties for lattice.
- (6) Define with example : Complemented lattice.
- (7) Define : Atoms and Co-atoms.
- (8) Define : Phrase structure grammar and language of a phrase structure grammar.

1

- (9) Define with example : Statement.
- (10) Explain negation of a proposition.

HAM-003-1163004]

[Contd...

- 2 Answer any **two** from the following questions :
 - Let R_1 and R_2 be equivalence relations defined on a nonempty (a) set A then show that, $(R_1 \cup R_2)^{\infty}$ is the smallest equivalence relation on A containing $R_1 \cup R_2$.
 - (b) State and prove, fundamental theorem of homomorphism of semi groups.
 - Explain Warshall's algorithm. (c)
- Answer following **two** : 3
 - Prove that, if (L, \leq) be any finite boolean algebra then there (a) exists a nonempty set A such that (L, \leq) is isomorphic to $(P(A), \subset)$.
 - Define sublattice. Give an example to show that sublattice of (b) a complete lattice need not be complete.

OR

- 3 Answer following two :
 - (a) Prove that, (L, \leq) is a modular lattice if and only if any sub lattice of (L, \leq) is not isomorphic to the pentagon lattice.
 - (b) Let $G = (V, S, v_0, \mapsto)$ be a phrase structure grammar in which $V = \{v_0, w, a, b, c\}, S = \{a, b, c\}$ and v_0 is the starting symbol for substitutions and the production relation \mapsto is given by
 - (1) $v_0 \mapsto aw$
 - (2) $w \mapsto bbw$
 - $w \mapsto c$. Find L(G). (3)
- 4 Answer following **two** :
 - (a) Explain tautology. Verify by truth table that given compound statements are tautology or not.
 - (1) $\sim a \lor (a \lor b)$
 - (2) $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$
 - $(3) \quad (\sim a \wedge b) \rightarrow b$

HAM-003-1163004]

 $2 \times 7 = 14$

 $2 \times 7 = 14$

 $2 \times 7 = 14$

 $2 \times 7 = 14$

(b) Explain logical equivalence. Verify the following by truth table.

$$(1) \quad (p \to q) \equiv (\sim p \lor q)$$

(2)
$$\sim (p \wedge q) \equiv \sim p \vee \sim q$$

(3)
$$a \wedge (b \vee c) \equiv (a \wedge b) \vee (a \wedge c)$$

5 Answer any two from the following questions : $2 \times 7 = 14$

- (a) Explain the following.
 - (1) Conjunction of propositions
 - (2) Disjunction of propositions
 - (3) Conditional statement
 - (4) Converse of a conditional statement
- (b) State and prove, pumping lemma.
- (c) Let (P, \leq) be a POSET. Prove that (P, \leq^{-1}) is also a POSET. Where \leq^{-1} is defined by $a \leq^{-1} b$ if $b \leq a, \forall a, b \in P$.
- (d) Let $f(x) = x^2 x 2$ and *R* is a relation on $(\mathbb{Z}, +)$ defined by ${}_aR_b$ iff f(a) = f(b). Prove that, *R* is an equivalence relation on \mathbb{Z} but it is not a congruence relation on \mathbb{Z} .